Abstract—Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is ~10 times of graphite

نویسندگان

  • James J. Wu
  • William R. Bennett
چکیده

Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is ~10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and deinsertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries.

Rechargeable lithium-ion batteries are essential to portable electronic devices. Owing to the rapid development of such equipment there is an increasing demand for lithium-ion batteries with high energy density and long cycle life. For high energy density, the electrode materials in the lithium-ion batteries must possess high specific storage capacity and coulombic efficiency. Graphite and LiCo...

متن کامل

MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries

AMoO3–carbon nanocomposite was synthesized from amixture ofMoO3 and graphite by a controlled ball milling procedure. The as-prepared product consists of nanosized MoO3 particles (2–180 nm) homogeneously distributed in carbon matrix. The nanocomposite acts as a high capacity anode material for lithium-ion batteries and exhibits good cyclic behavior. Its initial capacity exceeds the theoretical c...

متن کامل

Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp2 and sp3 type hybridization) as a new carbon based anode material. The π electron of C2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces ...

متن کامل

Germanium-Based Electrode Materials for Lithium-Ion Batteries

Advanced energy-storage systems are critically important for meeting the ever-increasing demand for applications from portable electronics to all-electric vehicles, and recently for applications in the grid for storing energy from fluctuating renewable sources, such as wind or solar energy. Lithium-ion batteries (LIBs) have received worldwide attention as a top performing energy-storage system....

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012